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ABSTRACT
The unique properties of nanocomposites have seen them creating
the next revolution in materials science. Their quantal properties
as a result of their size have given them unique physical charac-
teristics, previously not possible because of classical physical laws.
There is now evidence that these may also extend into the world
of biology and medicine. In this Account, we look at the birth of a
new generation of silica nanocomposites using polyhedral oligo-
meric silsesquioxanes, a promising nanoscale silica particle with
particular use in cardiovascular interventional devices.

Introduction
Since time immemorial, materials have been the building
blocks of civilization and have defined ancient history as
in the Bronze Age, Iron Age, and Copper Age. In the last
hundred years, man-made materials such as polymers
have come into vogue. Today, millions of tons of these
materials are used in our everyday lives. In addition, these
materials have been reinforced with fillers at the micros-

cale level such as carbon fiber, graphite, and others to
improve their mechanical properties. More recently, it has
been recognized that their characteristics may be further
improved by mixing them at the nanoscale level due to
the quantum confinement effect,1 lending support to the
adage “Size does matter”, by so doing obviating the laws
of classical physics.

Nanocomposites
Definition. Nanocomposites are materials whose com-
ponents are mixed at a nanometer scale. Due to their
quantum-scale sizes, they can serve as bridges between
molecules in the polymer. This nature allows them to
exhibit different properties from conventional microcom-
posites.2 Examples of this in nature are shells (Figure 1),
bones, and teeth. Composite shells or nacre are composed
of alternating calcium carbonate (CaCO3) and nanoscale
aragonite asperities3 and, in so being, are 3000 times
stronger than monolithic CaCO3 crystals.4 Man has since
endeavored to synthesize nanocomposites, and it has been
found that these synthetic nanocomposites have immense
potential because they possess increased conductivity,
mechanical strength, optical activity, and catalytic activ-
ity.5 Their behavior is governed by the method of nano-
reinforcement, the nano-interface, the synthetic process
utilized, its microstructural effects, and the interaction
between the polymeric and reinforcing component.6

Synthesis. Nanocomposites can be synthesized using
the melt-intercalation, solvent method, or in situ polym-
erization method.8 Whatever the method, the reaction
generally involves hydrolysis and condensation. The final
result depends on the phase separation during the cata-
lyzed sol-gel process. The ultramorphology of these
nanocomposites depends on the rate of hydrolysis or
condensation as well as the sol-gel catalyst. Faster hy-
drolysis predisposes to simple or branched silica matrixes,
while filament-like nanostructures are formed as a result
of rapid condensation. Sol-gel catalysts also affect the
physical properties of the nanocomposite.9 While acid-
catalyzed processes form dismal nanocomposites, base-
catalyzed reactions cause villae formation on their surfaces
because only the hydrophilic components of the polymer
absorb water and expand and not the inorganic constitu-
ents, which form a rigid network. On the other hand, when
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nanocomposite formation is catalyzed with salts (anionic
reaction) during condensation, material strength may be
increased by weakening the bond between the anionic and
cationic component of the salt as illustrated by Figure 2.
In other words, weaker salts improve interfacial interac-
tions between the inorganic (ceramic) component and the
organic constituents thus conferring improved elasticity
and flexibility to the nanocomposite.10

Structure. Conventionally when the components of a
composite are mixed, phase separation occurs resulting
in the formation of microcomposites. In nanocomposites
however, the nanofillers are able to intercalate between
the layers of the matrix (intercalated type) or be even
further dispersed uniformly within the matrix to form
exfoliated nanocomposites thus maximizing the surface
area for component interaction. While intercalated nano-
composites have regular interlayers, exfoliated ones have
larger interlayers (Figure 3).

Classification. Once formed, nanocomposites exist as
stacked layers separated by an interface termed “inter-
layer” or “gallery”. The anionic nanofillers such as clay

confer negative charges to each layer, which can be
counterbalanced by the addition of exchangeable cations
at the interlayer. The surface energy of these nanocom-
posites may hence be manipulated by altering the ionic
composition of these adjacent layers.

Depending on the ultrastructure of the synthesized
nanocomposite, Novak in 1993 classified nanocomposites
as being of the following types:12

I. Organic polymer embedded in an inorganic matrix
without covalent bonding between the components.

II. Organic polymer embedded in an inorganic matrix
with sites of covalent bonding between the components.

III. Coformed interpenetrating networks of inorganic
and organic polymers without covalent bonds between
phases.

IV. Coformed interpenetrating networks of inorganic
and organic polymers with covalent bonds between
phases.

V. Nonshrinking simultaneous polymerization of inor-
ganic and organic polymers.

The commonest types synthesized are types I, II, and
V.12 Type I composites form an inorganic, completely
interpenetrating network around an organic polymer
component with no covalent bonding. Greater interpen-
etration between its components results in stronger, more
resilient, and optically transparent materials. When there
exists covalent bonding between the organic and inorganic
components of the nanocomposite, these materials are
classified as type II nanocomposites. A prime example of
this would be silane molecules with reactive pendant
groups such as isocyanates bonding covalently with the
organic component. When the organic and inorganic
components are polymerized together, it prevents the loss
of the solvent during hydrolysis for it is solvent loss that
causes material shrinkage and cracking as a result of
capillary pressures. These novel nanocomposites have
been classified as type V. When the interpenetrating net-
work is composed of both inorganic and organic phases,
it is classified as type III or IV depending on the presence
of covalent bonding.9

Due to the size of these nanofillers, their surface areas
are up to 400% more than conventional microfilled com-
posites. These are advantageous because their mechanical
strength, optical properties etc. are accentuated. There-
fore nanofiller dispersion is crucial during synthesis either
by direct blending or by in situ polymerization. Disper-
sion is dependent upon the shear force between par-
ticle and the polymer. This may be further increased by
making these nanofillers compatible with the remaining
polymer. Alternatively, these nanofillers may be directly
polymerized.13

Characteristics. A unique property of nanocomposites
is nonlinearity. Z-scanning of these nanocomposites has
shown high degrees of nonlinearity. This has been at-
tributed to the “free carrier” effect.14 This effect, normally
seen in semiconductors, is due to the difference between
the electron acceptors and donors within the material.15

The dielectric property of nanocomposites is due to the
presence of Stern-Gouy-Chapman layers acting as in-

FIGURE 1. Sea shellssa prime example of a biological nanocom-
posite.7

FIGURE 2. The effect of catalytic cation type on nanocomposite
strength, adapted from ref 10.

FIGURE 3. Types of synthesized nanocomposites. Reprinted with
permission from ref 11. Copyright 1999 Springer.
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teraction zones around the particles, which form quasi-
conducting paths within the composite.16 Others have
attributed the direct current ionic conductivity of nano-
composites to be due to the variable range-hopping
mechanism whereby its alternating current conductivity
arises from the small polaron tunneling mechanism.17 This
results in the presence of unstable surface free energy as
well as the ability to conduct electrical impulses.

As discussed earlier, nanocomposites have far greater
mechanical strengths18 than their constituents. Studies
have shown that their strength is based on the arrange-
ment of nanofillers or “mineral platelets” within a soft
protein matrix as shown in Figure 4. While the nanofillers
confer tensile strength to the composite, the interfacial
shear attributable to the lubricating proteins allows for
efficient load transfer due to the significantly enhanced
surface area/volume ratio of the composite.19 The Griffin
criterion states that in composites with fillers below a
critical length, the strength of the composite, even if
cracked, is virtually equivalent to a solid crystal. This holds
true for nanocomposites and explains the relative im-
munity of nanocomposites to fracture.4

Conventionally, increasing filler content within size-
selective polymers decreases the polymers’ permeability
in accordance with the Maxwell equation. Transport
through these polymers normally depends on their free
volume content wherein larger spaces allow greater perm-
eability. These voids may be classified as static or dynamic.
The former depends on polymer packaging, while the
latter is a temporary20 effect due to thermally induced
polymer chain rearrangement. On the other hand, nano-
composites exhibit a phenomenon called “reverse-selec-
tivity”.5 This has been hypothesized to be due to nano-
fillers, which prevent close packaging of the polymer by
augmenting void space within the polymer without in-
creasing free phase flow through the nanomaterial. In
simple terms, reverse-selective nanocomposites prefer-
entially allow larger molecule transport through the com-
posite than those of smaller sizes. This phenomenon
could, in particular, have far ranging implications in bio-
logical membranes.5 More recently, studies have begun
to show that these nanomaterials have the ability to distort
the conformation of adsorbed proteins thereby inactivat-
ing them.21

When semiconductors have band gap energies of 3 eV
or less, which lie within the visible light band region, they
can convert solar energy into chemical energy. This
characteristic is inversely proportional to the semicon-
ductor’s constituent particle sizes.22 Nanoengineered
materials such as sub-nanometer CdS and TiO2 par-
ticles have been shown to possess greater photocata-
lytic effects than conventional photocatalytic semiconduc-
tors.23 Photocatalysts such as TiO2 nanocomposites are
exposed to light; they release highly reactive hydroxyl
radicals in a redox reaction induced by light, which has
been shown to inactivate bacterial endospores.24 This
property would make these nanomaterials ideal for resist-
ing infections.

Current Nanocomposites. Nanocomposites may be
either biological,3 synthetic, or hybrid.26 The current types
of synthetic nanocomposites may be broadly classed into
clay-, carbon-, metal-, or glass-reinforced nanomaterials.27

The most common nanofillers used seem to be silicon-
based ones. Clay-based nanocomposites are usually lay-
ered in the form of montmorillonite, hectorite, or sapo-
nite,11 while metal oxides such as ZnO and TiO2 have also
served as nanofillers.28 Carbon-based nanocomposites29

exists as single or multiple nanotubes.30,31 These can be
grown in vitro as crystals. More recently, even silicon
heterostructures have been grown.32

Nanocomposites are amphiphilic, thermodynamically
stable, biodegradable, and biocompatible with good dis-
tribution within biological systems.33 This, along with their
small size (∼20 nm) and surface characteristics, slows
reticulo-endothelial system degradation making them
ideal as nanocarriers. In vitro studies on anionic nano-
carriers of low-density lipoproteins (LDL) have so far been
encouraging.34 Their unique properties have also seen
them being used in a variety of biomedical devices such
as nanowires35 or microelectrodes.36 In the second half of
this Account, we shall dwell on a novel type of silica
nanofillers called polyhedral oligomeric silsesquioxanes
(POSS) and their derivatives.

Polyhedral Oligomeric Silsesquioxanes
In contrast to siloxane, silsesquioxanes (SQS) exist as
ladder- or cage-type nanostructures.37 These three-
dimensional organosilicon oligomers are formed by com-
plete hydrolytic condensation of their trifunctional mono-
mers, Si4O6 (see Figure 5a). The strong intermolecular
forces between their constituent molecules and neighbors,
as well as their strong framework with their shorter bond
lengths (Table 1) make these silica nanocomposites even
more resistant to degradation.38

In 1995, Lichtenhan and co-workers39 developed and
patented a closed-cage SQS, POSS or molecular silica,40

as shown in Figure 5b. These molecules are composed of
two cyclic rings of oxygen and silicon in accordance with
the stoichometric formula (SiO1.5)n where n can represent
8, 10, or 12 repeats (Figure 5a). The POSS molecule is in
the octameric form with well-defined nanoclusters having
an inorganic silica-like core surrounded by eight organic

FIGURE 4. Schematic representation of the interfacial effects of
nanocomposites when subjected to mechanical loading. Reprinted
with permission from ref 4. Copyright 2003 National Academy of
Sciences.
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corner groups, which can be replaced by X-X′ functional
groups to form homosilsesquioxanes,38,41 or to be formed
into dendrimers or used as nanobridges.42-44 Depending
on the number of side groups, they may exist as pendant
cages, be part of a polymeric backbone, or be cross-linked.
Researchers have since shown that these nanocomposite
cubes may be incorporated as building blocks45 of con-
trollable shapes43 into other polymers to form hybrid
inorganic-organic copolymers46 with improved miscibility
and elasticity.47

Continuous-space Monte Carlo simulations on POSS
network structures have shown that increasing linker
length while reducing the reactiveness of their tethers
increases the intercubic pore sizes within the nanocom-
posite thus resulting in an even distribution of the
nanocages. This prevents the formation of large mesopore
and bulk cavities. However, this effect is countered if their
tethers are rigid because the degree of cross-linking would
be reduced.48 Studies have shown that POSS nanofillers
increase the glass transition temperatures (Tg) at higher
concentrations by reducing the distances between these
nanofillers, thereby aggregating them. This effect hinders
molecular or segment rotation with reference to the
polymer and reduces its dipole interaction potential, thus
making the polymer stronger.49

In the world of cardiovascular interfaces, a much
sought after goal is the duality of amphilicity and anti-
thrombogenicity.50-52 While anti-thrombogenicity prevents

early graft occlusion, amphilicity of its surface would
ensure optimal endothelialization. There have been re-
ports that POSS acts as an amphiphile at the water-air
interface,53 a characteristic that has already prompted
researchers to patent these for use at the vascular interface
such as stents.54,55 We have synthesized a novel type II
nanocomposite, single functional side-group POSS mol-
ecules in the form of a pendant side chain attached to
poly(carbonate-urea)urethane (PCU),56-58 similar to that
synthesized by Fu and colleagues.59 We utilized the
octameric POSS molecule because studies have shown
that nonlinearity and dielectricity is better when the
number of repeats (n) is 8 or less.60 By combining polymer
science and tissue engineering, we intend to create the
building blocks of an artificial capillary bed,61 and studies
to this effect are currently being carried out.

We have shown that POSS nanocomposites, unlike
carbon nanotubes,62 are cytocompatible and hence suit-
able for tissue engineering. We have shown that there was
no significant difference in cell viability, adhesion, and
proliferation between POSS nanocomposites and standard
cell culture plates.63,64 Further experiments are now afoot
to assess their thrombogenic potential, hypothesized to
be due to reduced adsorption of proteins and platelets
responsible for activating coagulation. Our postulate is
that a pendant nanocage containing silicon atoms would
form foci of silicon-rich areas with increased surface free
energy thus allowing endothelialization and repelling
coagulant proteins.65 In addition, the inorganic POSS
matrix confers a viscoelastic effect to the bulk of the
nanocomposite,66 which is useful in vascular prostheses.67

In summary, the combination of the unique POSS mol-
ecules and polymers holds great promise for the future
of biomedical devices, especially at cardiovascular inter-
faces.

FIGURE 5. Molecular structures of (a) silsesquioxane (SiO1.5)n molecules with 4, 6, and 8 repeats where Si4O6 represents the monomeric
component of POSS molecules (please note that the molecular formula Si8O12 can exist in the non-POSS form as shown in the far right
image) and (b) the cubic POSS molecule with its constituent molecules spread out in a symmetric fashion.25

Table 1. Bond Lengths and Bond Angles between the
Molecules in a POSS Nanocage

molecules bond length (nm) molecules bond angle (deg)

Si-H 0.147 O-Si-O 110
Si-O 0.170 Si-O-Si 137-148
Si-Si 0.540
Si-C 0.230
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